ViPrimePLUS Human Parvovirus B19 qPCR Kit Quantitative assay for real-time PCR detection of Human Parvovirus B19 genome

Product Code: QM5048 Pack Size: 150 reactions

INTENDED USE

The ViPrimePLUS Human Parvovirus B19 qPCR Kit is a Taqman probe-based real-time PCR assay for the detection of Human Parvovirus B19 genome in clinical (e.g. blood) samples. This assay is intended for research use only.

INTRODUCTION

Human Parvovirus B19 (HPVB19) is a single stranded DNA virus which causes erythema infectiosum or commonly known as the fifth disease and hydrops fetalis. Rash on the cheeks is the defining symptom of fifth disease infection. It is very common in children and has a low mortality rate. Although healthy individuals usually recover from the infection without any major side-effects, immunocompromised patients may suffer from chronic anemia and other hematological abnormalities. In certain cases, neurological impairments may occur. Infected pregnant ladies suffer probably the most serious complication, especially during the first 20 weeks of the gestational period where non-immune hydrops fetalis and fetal death occur in 2-6% of the cases.

PRINCIPLE OF TEST

The kit contains primers and Taqman® probe that targets the NS1 protein encoding gene.

Based on the Taqman® probe detection principle, the 5'-reporter dye and 3'-quencher dual-labelled oligonucleotide (Taqman® probe) hybridizes on a specific region within the amplified fragment. During amplification, the probe is cleaved and the reporter dye (fluorophore) is released. The fluorescent signal intensity detected is proportional to the number of amplicons. The Ct value (the cycle at which the rise of fluorescent signal from the baseline is first significant) is used for quantification purposes. Target pathogen amplification is detected using FAM channel.

The kit provides the Internal Extraction Control (IEC) as inhibition control. During nucleic acid extraction protocol, IEC DNA template is added in the lysis stage. An IEC specific primers and probe labelled with a different dye is provided to be run in the same reaction with the pathogen-specific primers and probe mix. The IEC amplicons are detected via VIC/HEX channel at Ct value 28±3 depending on the sample dilution.

A positive control with known copy number is provided for standard curve construction and absolute quantification. It can also be used at a single dilution for qualitative analysis control of the experimental set-up. Extra care must be taken to avoid cross-contamination.

QUALITY CONTROL

Each lot of ViPrimePLUS Human Parvovirus B19 qPCR Kit has been tested against predetermined specifications to ensure consistent product quality under ISO 9001:2008 – certified Quality Management System.

SENSITIVITY & SPECIFICITY

The detection limit is tested to 100 copies per reaction. The primers and probe are 100% specific.

STORAGE & STABILITY

Store at -20°C and avoid light exposure. Stable at -20°C up to the expiry date stated. Keep in aliquot to reduce freeze-thaw cycles.

LIMITATION OF TEST

For research use only. Not recommended for diagnosis of disease in humans or animals.

Result is dependent on the yield and quality of the nucleic acids extracted from the method of extraction. Thus, it is important to do spectrophotometric and gel analysis on the extracted samples.

KIT COMPONENTS

HPVB19 Primers and Probe Mix (HPVB19 PPM)
Positive Control
Internal Extraction Control Primers and Probe Mix (IEC PPM)
Internal Extraction Control (IEC DNA)
Nuclease Free Water
Template Preparation Buffer

Amber Capped Tube Pink Capped Tube Amber Capped Tube Blue Capped Tube White Capped Tube Yellow Capped Tube

SAMPLE MATERIAL

The kit is suitable for DNA extracted by most commercial kits, provided the purity, concentration and integrity are within acceptable range. IEC is provided to eliminate doubts of PCR inhibition. Suitable sample type is blood.

PROTOCOLS

Reconstitution of reagents

*Pulse-spin each tube prior to opening.

Components	Volume	Reagents
HPVB19 PPM (Amber)	165µl	Nuclease Free Water
IEC PPM (Amber)	165µl	Nuclease Free Water
IEC DNA	600µl	Nuclease Free Water
Positive Control Template	500µl	Template Preparation Buffer

DNA extraction

Add 4μl of IEC DNA into each sample suspended in the lysis/extraction buffer.

*DO NOT add IEC directly into unprocessed biological sample.

Real-time PCR reaction set-up

Recommended real-time PCR reaction set-up:

Reagents	1 reaction (µI)
2x PCR Mastermix	10
HPVB19 PPM	1
IEC PPM (not required when preparing standards' reaction mix)	1
Nuclease-free water	3
Sample DNA	5

^{*}Suggested sample concentration 5-20ng/µl.

Negative control

Set aside one tube/well as negative control where 5µl of nuclease-free water is used as the template. This is also known as no template control.

Positive control

For qualitative analysis, set aside one tube as positive control where 5µl of the positive control is used as the template.

Positive control (optional)

For quantitative analysis only, prepare 6 serially diluted positive control templates for standard curve construction.

- a) Pipette 90µl of nuclease-free water into 5 clean microtubes and label 2-6 accordingly.
- b) Pipette 10µl of Positive Control into tube 2.
- c) Vortex thoroughly and spin down.
- d) Change pipette tip and pipette 10µl from tube 2 to tube 3. Vortex and spin down.
- e) Repeat steps d) to complete the dilution series.
- f) Pipette 5μl of standard template into each tube/well accordingly.

Standards	Copy number/µl
Tube 1 Positive Control	2 x 10 ⁵
Tube 2	2 x 10 ⁴
Tube 3	2 x 10 ³
Tube 4	2 x 10 ²
Tube 5	20
Tube 6	2

Set the thermal cycler parameters as follows:

Set the thermal cycler paramet	leis as ioliows.			
Step	Time	Temp	Cycles	Scan
Enzyme activation	2mins	95℃		
Denaturation	10secs	95℃	50	
Anneal/Elongation	1min	60℃		√*

^{*}FAM or VIC/HEX

^{*}Adjust nuclease-free water to make up the final reaction volume of 20µl.

^{*}Prepare an extra reaction to accommodate for pipetting error.

INTERPRETATION OF RESULTS

Pathogen specific amplification signal is detected via FAM channel, while IEC amplification is detected via VIC/HEX channel. The signal is positive if the amplification curve crosses the threshold line. The result is relevant provided both positive and negative controls give valid results.

Summary of interpretation:

Target	IEC	Negative Control	Positive Control	Interpretation
+	+	-	+	Valid, positive
+	-	-	+	Valid, positive
-	+	-	+	Valid, negative
-	-	-	-	Invalid
+	+	+	+	Invalid

Internal Extraction Control

When used accordingly and assuming 100% extraction efficiency, a Ct value of 28±3 is within normal range. A high Human Parvovirus B19 genome copy amplification may out compete the IEC amplification. Thus, the latter may not produce an amplification signal. The positive result is still valid in this case.

TROUBLESHOOTING

Problem	Possibility	Suggestion
Negative control /	•	Change nuclease-
No template	Carry over contamination	free water. Use fresh
control gives	Contamination	aliquots of reagents.
positive result		Use filtered tips. Load
positive result		positive control last.
No signal	Incorrect	Check program.
detected from	programming of	Check program.
positive control	instrument	
positive control	Reagents expired	Check the expiry date
	rieagents expired	of reagents before
		repeat.
	Storage condition	Check storage
	not complying with	condition properly
	instructions	and store at correct
	motraotiono	storage condition to
		avoid the degradation
		of reagents.
	Pipetting error	Pipette the correct
		volume of reagents to
		reconstitute the
		components of kit
		and mix well.
Internal extraction	Inhibitors in the	Repeat the
control does not	samples extracted	extraction.
give a signal in	Low recovery of	Repeat the extraction
apparently	RNA extracted	by enlarge the
negative samples		sample size.
	IEC added directly	Add IEC into each
	into unprocessed	sample suspended in
	biological sample -	the lysis/extraction
	lead to degradation	buffer.
	and loss of signal	

DEVIATION OF MASTERMIX FORMULATION

Manufacturers use varying methods to calibrate a realtime PCR reaction. For this reason, we provide several Mastermix formulations for those platforms.

Master Mix	Compatible Hardware
Original	Biometra qTower, Cepheid SmartCycler®, Eppendorf Mastercycler, Fluidigm BioMark™, Illumina Eco, MJ Chromo4, Opticon, PCRMax Eco™, Roche lightcycler® 480, lightcycler® LC96 and lightcycler® Nano Platforms, RotorGene, Thermo PikoReal™
Low Rox (-LR)	Applied Biosystems 7500 and 7500 FAST platform, QuantStudio™, ViiA7.
Rox (-R)	Applied Biosystems 7000, 7300, 7700, 7900 and 7900HT FAST platforms, GeneAmp® 5700, StepOne™, StepOne™ PLUS
iCycler platform (-iC)	BioRad iCycler, IQ4 AND IQ5 platforms
Stratagene platform (-SG)	Stratagene MX, MX4000P®, MX3000P® and MX3005® platforms
Capillary lightcyclers (-CL)	Roche Capillary Lightcycler 1.0-2.0.

WARRANTY & LIMITED LIABILITY

The performance characteristics stated were obtained using the assay procedure in this insert. Failure to comply with the instructions may derive inaccurate results. In such event, manufacturer disclaims all warranty expressed, implied or statutory including the implied warranty of merchantability and the fitness of use.

The manufacturer will not be liable for any damage caused by misuse, improper handling and storage; non-compliance with precautions and procedures, and damages caused by events occurring after the product is released.